Surface Water Hydrology Homework #3 Due on Wednesday, March 7, 2012

Problem 1. Using the hydrostatic equation to solve the following questions.

- A. What is the gage pressure (P) at a depth of 15.0 m in a lake with a water temperature of 10°C?
- B. Would the pressure change significantly if the water temperature was 18°C instead?
- C. At what depth (m) is the gage pressure 350 kPa?
- D. What depth (m) of mercury, with a unit weight of 133 kN m⁻³, would be required to produce a pressure of 350 kPa?

Properties of water as function of temperature

Temperature, °C	Viscosity μ, Pa × Second	Density ρ, kg/m³
5	1.519×10 ⁻³	999.99
10	1.307×10 ⁻³	999.73
15	1.139×10 ⁻³	999.13
20	1.002×10 ⁻³	998.23

Problem 2. A plat is pulled over a horizontal layer of water that is 20.0 mm deep. The temperature of the water is 10° C. If the plate exerts a shear stress of 0.02 N/m^2 on the upper surface of the water, what is the speed (m/s) of the plate?

Problem 3. Surface temperature in a river is measured by a thermometer drifting with the water at a rate of 0.8 km/hr. The water in the river as a whole is warming at a rate of 0.3°C/hr, and the temperature along the stream increases by 0.2°C every kilometer in the downstream direction. What change in temperature (°C) does the thermometer record in 8 hours?

Problem 4. A tank is filled to a constant level of 1 m. The center of the outflow opening near the bottom is 0.2m above the bottom of the tank. What is the velocity (m/s) of flow exiting form the outflow opening?

Problem 5. The pressure drop through a well-designed constriction can be used to measure the velocity of flow through a pipe. If the pressure drop from a 0.2-m diameter cross section to a 0.08-m diameter cross section is 8.0 kPa, what is the velocity (m/s) in the 0.2-m diameter section of the pipe?

Problem 6. A steady discharge of 1.0×10^{-4} m³/s is flowing through a 10-mm diameter hose. The viscosity of the water is 1.0×10^{-3} Pa×Second, and the density of the water is 1000.0 kg/m³.

- A. Calculate the Reynolds number. Is he flow laminar or turbulent?
- B. What is the friction factor and the head loss per unit length for this flow (both are dimensionless)?
- C. What is the change in pressure (Pa) over a 5-m length if the hose?