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Abstract: Soil particle size distribution �PSD� �i.e., clay, silt, sand, and rock contents� information is one of critical factors for under-
standing water cycle since it affects almost all of water cycle processes, e.g., drainage, runoff, soil moisture, evaporation, and evapo-
transpiration. With information about soil PSD, we can estimate almost all soil hydraulic properties �e.g., saturated soil moisture, field
capacity, wilting point, residual soil moisture, saturated hydraulic conductivity, pore-size distribution index, and bubbling capillary
pressure� based on published empirical relationships. Therefore, a regional or global soil PSD database is essential for studying water
cycle regionally or globally. At the present stage, three soil geographic databases are commonly used, i.e., the Soil Survey Geographic
database, the State Soil Geographic database, and the National Soil Geographic database. Those soil data are map unit based and
associated with great uncertainty. Ground soil surveys are a way to reduce this uncertainty. However, ground surveys are time consuming
and labor intensive. In this study, an inverse method for estimating mean and standard deviation of soil PSD from observed soil moisture
is proposed and applied to Throughfall Displacement Experiment sites in Walker Branch Watershed in eastern Tennessee. This method is
based on the relationship between spatial mean and standard deviation of soil moisture. The results indicate that the suggested method is
feasible and has potential for retrieving soil PSD information globally from remotely sensed soil moisture data.
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Introduction

Soil particle size distribution �PSD� provides information about
clay, silt, sand, and rock contents. According to the USDA par-
ticle size limit classification scheme �USDA-SCS 1982�, the sizes
of clay, silt, sand, and rock are 0.0002–0.002, 0.002–0.05, 0.05–
2.0, and �2.0 mm, respectively. To determine soil texture by the
proportions of sand, slit, and clay, particles larger than sand �i.e.,
�2.0 mm� are first removed. Since the sum of percentages of
clay, silt, and sand contents is equal to 100%, the percentage of
silt content can be estimated from clay and sand contents. There-
fore, hereafter, soil PSD is referred to clay, sand, and rock con-
tents.

Soil PSD is a critical factor for understanding the cycling of
water through terrestrial ecosystems because we can estimate
other soil hydraulic properties based on soil PSD information
�e.g., Rawls et al. 1982, 1989 and Saxton et al. 1986�. Soil prop-
erties affect almost all water cycle processes, including drainage,
runoff, soil moisture content, evaporation, and transpiration. Un-
derstanding regional or global spatially extensive water cycling
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requires a geographically distributed soil PSD database. At
present, three large-scale soil databases are commonly used in the
United States: the Soil Survey Geographic �SSURGO� database,
the State Soil Geographic �STATSGO� database, and the National
Soil Geographic �NATSGO� database. These soil data are “map
unit based.” Each map unit can have multiple components, and
the percentage of each component is given in an attribute table.
Since the geographic location of each soil component is not speci-
fied, we can only determine the soil PSD of each map unit using
the weighted average of all soil components.

For example, a map unit has n soil components. We use Si, Ci,
and Ri to represent the percentages of sand, clay, and rock for
component i and Ai to represent the distributional area coverage
of component i. Using the weighted average method, we can es-
timate the mean PSD of the map unit as follows:
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However, this method is questionable when the study domain is
not the same as the map unit. Moreover, we cannot estimate the
variance or standard deviation of the soil PSD for the map unit
because those soil databases do not provide any information on
spatial variance of soil properties of each soil component and
spatial correlation among soil components, while the soil spatial
variability affects the spatial pattern of hydrological processes
significantly �e.g., Sharma and Luxmoore 1979; Milly and Eagle-
son 1987�.

A soil survey is one way to determine the mean and variance

of soil properties �e.g., Edmonds et al. 1982, 1985; Edmonds and
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Lentner 1986; Cambardella et al. 1994; Young et al. 1997, 1998�.
Although a soil survey is relatively simple, it is time consuming
and labor intensive. As a consequence, the availability of compre-
hensive and consistent surveys over large spatial extents is quite
limited. Nevertheless, a soil survey provides a spatially distrib-
uted sample of point measurements. These point measurements
provide the basic information on soil properties needed by hydro-
logical models but to apply this information to a large-scale hy-
drologic model, we need to estimate the “effective” soil hydraulic
properties from the point measurements �e.g., Milly and Eagleson
1987; Yeh 1989; Kim et al. 1997; Zhu and Mohanty 2003�. The
effective soil properties are the integrated soil properties of the
computational elements with larger areas than the sample points
of soil surveys, e.g., basins, watersheds, catchments, or grid cells.
However, capturing the high spatial heterogeneity of soil charac-
teristics in the estimated effective soil parameters requires a
highly dense soil sampling network. This increases the difficulty
and expense of extracting effective soil properties directly from
soil survey point data.

Remote sensing of soil PSD is a potential solution to this
problem. Some studies have shown the ability of satellite spectral
imagery to quantify clay and sand contents over large areas using
spectral analysis �e.g., Palacios-Orueta and Ustin 1998 and oth-
ers�. However, the perennial issues of how clouds and atmosphere
affect satellite imagery limit this approach, adding a different,
nonsampling source of uncertainty in estimating soil texture.

Another alternative and the one we investigate here is to re-
trieve the soil PSD information through “inversion” of microwave
remotely sensed soil moisture. If we consider the observed soil
moisture as an output signal of a system due to an input signal
such as precipitation, radiation, and other forcing, it is an inverse
problem �Santamarina and Fratta 1998� to determine the system
characteristics �e.g., soil PSD� from the output �i.e., soil moisture�
only or a combination of input and output. Feddes �1995� used an
inverse modeling approach to determine large-scale effective soil
hydraulic properties by fitting simulated soil moisture to remotely
sensed soil moisture. However, Feddes’ dependency on a soil-
water-vegetation-atmosphere �SWVA� model and the large data
requirement for running the model make this particular inverse
modeling approach difficult to implement.

Chang and Islam �2000� and Chang et al. �2003� applied the
artificial neural network models to retrieve soil texture informa-
tion from microwave remotely sensed brightness temperature.
However, a wide variation of soil PSD associated with each soil
texture classification indicates that using only soil texture infor-
mation could create a large uncertainty in hydrological modeling.

In this paper, we instead propose a simple inverse method to
estimate mean and variance of soil PSD from observed soil mois-
ture fields without running an SWVA model. The fundamental
goal is to apply this method to remotely sensed soil moisture.
However, since the remote sensing techniques on soil moisture
are still at the developing stage, the characteristics of short sam-
pling periods and few measurements during wet periods make it
difficult to use remotely sensed soil moisture for demonstrating
our methodology in this paper. In this study, we use existing soil
moisture observations for a mesic deciduous forest system in the
eastern United States to demonstrate our methodology. The soil
moisture measurements were collected on a �80 m�160 m� plot
with 200 regular grid cells �8-m spacing�, which can be thought
as remotely sensed soil moisture images with an 8-m resolution.
The detailed information is given in the study area and data sec-
tion. With the increasing availability of remotely sensed soil

moisture data, an easily implemented methodology for extracting
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soil PSD information promises an attractive alternative to costly
soil surveys and reduces uncertainty in the map unit based geo-
graphical soil databases.

Methods

Our proposed method is based on the relation between mean and
standard deviation of soil moisture. Through analyzing observed
soil moisture and studying the effects of the spatial variability of
soil texture on spatial variation of soil moisture, Pan and Peters-
Lidard �2008� found that the relation between the spatial mean
and standard deviation of soil moisture depends on the mean soil
moisture state. As the mean soil moisture varies between satu-
rated soil moisture and field capacity, the standard deviation in-
creases with decreasing mean soil moisture; but when mean soil
moisture is between the field capacity state and residual soil mois-
ture, standard deviation decreases with decreasing mean soil
moisture. The transition state is the field capacity at which evapo-
ration over bare soil or evapotranspiration over vegetated surface
switches from the potential rate to the actual rate limited by soil-
water content.

Since most observed soil moisture is between the states of
saturation and wilting point, we can construct the relationship
between the mean and standard deviation with three points: satu-

ration point �1: �̄1 ,�1�, transition state �2: �̄2 ,�2�, and wilting

point �3: �̄3 ,�3� �Fig. 1�. These points are defined by the mean
and standard deviation of soil moisture at �1� saturation, �2� field
capacity, and �3� wilting point, respectively.

According to Pan and Peters-Lidard �2008�, the variance or
standard deviation at Point 2 is a maximum. Therefore, we can
use a third-order polynomial to fit the scatter plot of mean and
standard deviation and force the best-fit �least-squares� curve
through those three points and with a local maximum at Point 2.
This expression is given by

�� = f0 + f1�̄ + f2�̄2 + f3�̄3 �2�

The parameters f0, f1, f2, and f3 satisfy the following equations:

�i = f0 + f1�̄i + f2�̄2 + f3�̄3 �i = 1,2, and 3� �3�
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Fig. 1. Schematic plot of the relationship between spatial mean and
standard deviation of soil moisture fields
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= f1 + 2f2�̄2 + 3f3�̄2
2 = 0 �4�

We solve Eqs. �3� and �4� and have the following:

f0 = �1 +
�2�̄1�̄2 − �̄1�̄1��SI�

��̄1 − �̄2�
− �̄1�̄2�̄2f3 �5�

f1 =
− 2�̄2�SI�

��̄1 − �̄2�
+ ��̄2�̄2 + 2�̄2�̄1�f3 �6�

f2 =
SI

��̄1 − �̄2�
− ��̄1 + 2�̄2�f3 �7�

f3 =
SW

��̄2 − �̄3�2
−

��̄3 + �̄1 − 2�̄2��SI�

��̄2 − �̄3�2��̄1 − �̄2�
�8�

where SW= ��1−�3� / ��̄1− �̄3� and SI= ��1−�2� / ��̄1− �̄2�.
Prior to inverting Eq. �2� with parameters given by Eqs.

�5�–�8� to estimate mean and standard deviation of soil PSD, we
first derive the analytical relationships among the mean and stan-
dard deviation of soil PSD and soil moisture fields at the three
states. Soil moisture ��� content at a certain hydraulic state can be
expressed as a function of sand �S�, clay �C�, and rock �R�

� = f�S,C,R� �9�

where C, S, and R stand for the percentages �%� of clay, sand, and
rock. We use �S,C to denote the correlation coefficient between
sand and clay and assume that there is no correlation between
rock content and sand, or rock content and clay. Applying Tay-
lor’s expansion to Eq. �9� �Benjamin and Cornell 1970�, we can

estimate a soil moisture mean ��̄� and standard deviation ���� as
follows:

�̄ = f�S̄,C̄,R̄� + ��1

2
�S

2 �2�

�S2 +
1

2
�C

2 �2�

�C2 +
1

2
�R

2 �2�

�R2

+ �S,C�S�C

�2�

�S � C
��

S=S̄, C=C̄, R=R̄

�10�

��
2 = ���S

2� ��

�S
�2

+ �C
2� ��

�C
�2

+ �R
2� ��

�R
�2

+ 2�S,C�S�C

��

�S

��

�C
��

S=S̄, C=C̄, R=R̄

�11�

Relations between soil-water potential and soil-water content
have been widely studied and well documented in the literature
�e.g., Rawls et al. 1982; Saxton et al. 1986�. In this study, we use
the soil-water potential relationship with soil-water content of
Saxton et al. �1986� to determine soil moisture at saturation, field
capacity, and wilting point. Soil moisture at saturation is given as

�s = �1 − R/100�	c1 + c2S + c3 ln�C�/ln�10�
 �12�

where c1=0.332, c2=−7.251�10−4, and c3=0.1276.
As the pressure head � is between �10 and �1,500 kPa, the
soil moisture is given as �Saxton et al. 1986�
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� = �1 − R/100�� ���
A
�1/B

�13�

where A=100 exp�c4+c5C+c6S2+c7S2C�, B=c8+c9C2+c10S
2C,

c4=−4.396, c5=−0.0715, c6=−4.880�10−4, c7=−4.285�10−5,
c8=−3.140, c9=−2.22�10−3, and c10=−3.484�10−5.

Based on Eqs. �10� and �11� and soil moisture retention equa-
tions �12� and �13�, we can derive mean and standard deviation of
soil moisture at saturation, field capacity, and wilting point as
functions of mean and standard deviation of soil PSD. The de-
tailed derivation is given in the Appendix.

Applying the expressions of mean and standard deviation of
soil moisture at saturation, transition, and wilting points �see Ap-
pendix� to Eqs. �5�–�8� and substituting them into Eq. �2�, we
obtain an expression of standard deviation of soil moisture fields
as a function of mean soil moisture, and mean and standard de-
viation of sand, clay and rock contents, and correlation coefficient
between sand and clay

�� = F��̄, S̄,C̄,R̄,�S,�C,�R,�S,C� �14�

To invert this equation and estimate mean and standard deviation
of sand, clay, and rock contents from the observed soil moisture

�i.e., �̄i and ���, we need to fit the scatter plot of mean and stan-
dard deviation of observed soil moisture fields with Eq. �14� by
minimizing the root-mean-squared error �RMSE� given as fol-
lows:

RMSE =�1

n�
i=1

n

	��,i − F��̄i, S̄,C̄,R̄,�S,�C,�R,�S,C�
2 �15�

where n=number of observed soil moisture mean and standard
deviation, i.e., using n pairs of observed data ��̄i ,��,i , i

=1, . . . ,n� to determine seven unknowns �i.e., S̄, C̄, R̄, �S, �C,
�S,C, and �R�.

Two methods can be used to achieve the best fit, i.e., Gauss-
Newton method �Fletcher 1987� or simple “global search” meth-
ods. To use the Gauss-Newton method to minimize the nonlinear
RMSE function given in Eq. �15�, we need first to construct
a Jacobian matrix. However, seven unknown parameters and
high nonlinearity of Eq. �15� make it difficult to obtain an ana-
lytical expression of the Jacobian matrix. Compared to the
Gauss-Newton method, the global search methods are simple.
On the other hand, the best-fit solution of Eq. �15� using the
Gauss-Newton method could be trapped in secondary minima.
This problem can be avoided when using a global search method
�Mosegaard and Tarantola 1995�.

There are several methods for a global search. The simplest
method is to exhaustively search the parameter space of unknown
parameters. Although this method is simple and efficient for prob-
lems with few parameters, the computation becomes unfeasible
for problems with many parameters �Mosegaard and Tarantola
1995�. To inverse a nonlinear equation with high dimensionality
�i.e., many parameters�, we can use a Monte Carlo search, i.e., a
random walk in the parameter space. Although the concept of the
Monte Carlo method is simple and not new, it has been widely
used to solve inverse problems, especially in seismology �e.g.,
Keilis-Borok and Yanovskaya 1967; Press 1968; Rothman 1985,
1986; Cary and Chapman 1988; Landa et al. 1989; Mosegaard
and Vestergaard 1991; Koren et al. 1991�. Because the main ob-
jective of this paper is to demonstrate the feasibility of the sug-
gested method, we use the simple and feasible Monte Carlo

search method here.

OF HYDROLOGIC ENGINEERING © ASCE / NOVEMBER 2010 / 933

tion subject to ASCE license or copyright. Visithttp://www.ascelibrary.org



Study Area and Data

Since 1993 a field experiment has been conducted in an upland
oak forest on the Walker Branch Watershed �WBW� in eastern
Tennessee to identify important ecosystem responses that might
result from future precipitation changes �Hanson et al. 1998,
2003�. On an 8 m�8 m grid, volumetric soil moisture at 0–35
cm is being monitored with time domain reflectometers �TDR� at
310 sampling locations inside the throughfall displacement ex-
periment �TDE� domain shown in Fig. 2. To eliminate the treat-
ment effects �the shaded area shown in Fig. 2� we only use soil
moisture measurements collected in the area without treatment.
Therefore, we have 200 sampling points to represent an area of
80 m�160 m. The TDR soil moisture measurements were made
on 107 days �approximately once per month� from 1993 to 2000
at each sampling point. However, among these 107 days, only 95
days have more than 50% �i.e., 100� sampling points that have
good measurements. To obtain a representative mean and stan-
dard deviation of soil moisture, we only used the data collected
during those 95 days. The data are available at WBW TDE web-
site �http://tde.ornl.gov/�.

There are two soil PSD data sets, which can be downloaded
from the WBW TDE website, available for validation of our
method. One is rock content �0–30-cm� measurement at each soil
moisture sampling site �Hanson et al. 1998�. Mean and standard
deviation of the measured rock contents are listed in Table 1. The
other data set is a soil survey conducted by Peters et al. �1970� at
13 pits inside WBW. Among those 13 pits, only Pit 6 is close to
the TDE site, which is marked in Fig. 2. The measured soil PSD
at Pit 6 is shown in Table 1.

Table 1. Measured and Inversely Estimated Soil PSD

S̄
�%�

C̄
�%�

R̄
�%�

�S

�%�
�C

�%�
�R

�%� �SC

Pit 6 19.2 5.9 26.6

Measured 14.3 3.3

Estimated 20.5 7.1 22.3 13.0 2.4 7.5 0.7

Fig. 2. TDE domain and Pit 6
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Results and Discussions

As discussed in the Methods section, in this study we use the
Monte Carlo method to search the optimal values of seven un-

knowns �i.e., S̄, C̄, R̄, �S, �C, �R, and �S,C� for a minimum RMSE
between observed and predicted ��. The searching domain is
given as 0	 S̄	100, 0	�S	100, 0	 C̄	100, 0	�C	100,
0	 R̄	100, 0	�R	100, and −1	�S,C	1. Fig. 3 shows that as
the number of iteration increases, the RMSE of the estimated ��

decreases. As the number of iteration reaches 108, the RMSE
reaches its minimum value �0.32%� and does not decrease with
increasing iteration number. The resulted PSD associated with the
minimum RMSE is listed in Table 1. Fig. 4 shows the scatter plot
of the mean and standard deviation of observed soil moisture at
WBW TDE sites. The best-fit curve is also shown in Fig. 4.

Since the measured soil PSD at Pit 6 is a point measurement
and the estimated soil PSD is associated with an area, we only can
compare the estimated mean PSD with the observed PSD at Pit 6.
According to Table 1, we can find that Pit 6’s PSD is generally
in the range of the estimated mean soil PSD
1 standard devia-
tion. Another comparison is between the estimated and observed
mean and standard deviation of rock content �R̄ ,�R�, as shown in

1 100 10000 1e+06 1e+08 1e+10
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0.1
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Fig. 3. Plot of the iteration number and the RMSE
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Fig. 4. Scatter plot of mean and standard deviation of observed soil
moisture, the best-fit curve �solid�, and 95% confidence interval
�dashed�
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Table 1. Although the inversely retrieved mean and standard de-
viation of the rock content are little overestimated, the measured

mean rock content is in the range of the estimated R̄
1 standard
deviation.

To assess parameter identifiability and reliability, we also con-
ducted an error analysis to determine the 95% confidence limits
of the estimated parameters. We first determined the 95% confi-
dence interval of the best-fit curve �i.e., predicted standard devia-
tion of soil moisture� and plotted the upper bound and lower
bound in Fig. 4. Using this 95% confidence interval, we generated
1,000 data sets. Each data set has 95 pairs of the mean and stan-

dard deviation of soil moisture ��̄i ,��,i , i=1, . . . ,95�, where the
mean soil moisture is the same as the observed mean soil mois-
ture, and the associated standard deviation of soil moisture was
randomly generated within the 95% confidence interval of the
predicted standard deviation of soil moisture, as shown in Fig. 4.
The Monte Carlo search method was applied to each data set to
retrieve seven soil PSD parameters. The average values and 95%
confidence limits of estimated seven soil PSD parameters from
those 1,000 data sets are listed in Table 2. They are close to the
estimated “true” soil PSD values listed in Table 1. The results of
this error analysis indicate that the proposed method is capable of
identifying soil PSD from the mean and standard deviation of soil
moisture by minimizing the RMSE given in Eq. �15�.

There are two possible sources of the errors in the estimated
soil PSD. As described in the “Methods” section, the inverse
method developed in this study is based on the relationship be-
tween spatial mean and standard deviation of soil moisture found
in Pan and Peters-Lidard �2008�. This relationship is valid as the
spatial variations of vegetation and topography are less than that
of soil, and the dominant factors controlling soil moisture spatial
variations come from soils over the soil moisture sampling area.
Although in this study the soil moisture data were collected in a
small area �i.e., 80 m�160 m�, vegetation and topography cannot
be completely uniform, which implies that the spatial variation of
vegetation and topography in the soil moisture sampling area can
induce some errors in the estimated soil PSD. In addition to this
error source, the uncertainty in the generalized soil-water poten-
tial relationship with soil-water content of Saxton et al. �1986�
can also influence the accuracy of the estimated soil PSD because
the relationship of Saxton et al. is used in this study to derive the
standard deviation of soil moisture as a function of mean soil
moisture state.

Summary

We developed and tested a simple method to retrieve soil PSD
from observed soil moisture. This method is based on the rela-
tionship between spatial mean and standard deviation of soil
moisture found in Pan and Peters-Lidard �2008�. Using the gen-

Table 2. Average Values and 95% Confidence Limits of the Inversely
Estimated Soil PSD Based on 1,000 Random Generated Soil Moisture
Data Sets

S̄
�%�

C̄
�%�

R̄
�%�

�S

�%�
�C

�%�
�R

�%� �SC

Average 20.4 7.0 22.4 13.3 2.5 7.6 0.7

Lower limit 19.9 6.3 22.1 12.6 2.3 7.4 0.6

Upper limit 20.9 7.7 22.8 14.0 2.6 7.9 0.8
eralized soil-water characteristics of Saxton et al. �1986�, we de-
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rived the standard deviation of soil moisture as a function of mean
soil moisture state. In this function, we have seven parameters,
i.e., mean and standard deviation of soil sand, clay, rock contents,
and correlation coefficient between sand and clay. To estimate soil
PSD we fitted the scatter plot of mean and standard deviation of
soil moisture fields with the derived function.

We compared the estimated soil PSD with the measured PSD
at one pit near our study domain. There is a good agreement
between the inversely retrieved mean soil PSD and the measured
soil PSD at the pit. We also found that the estimated mean and
standard deviation of the rock contents are close to the measured
values. In addition to these two comparisons, we conducted an
error analysis to assess the parameter identifiability and reliability.
The average values and 95% confidence limits of retrieved seven
soil PSD parameters are close to the estimated true soil PSD
values, which indicate that the proposed method is capable of
inversely retrieving soil PSD from observed mean and standard
deviation of soil moisture. Since there is no measurement of the
standard deviation of soil sand and clay contents and correlation
coefficient between sand and clay at WBW TDE sites, we could
not perform a direct comparison between the estimated and mea-
sured values of those parameters. A future soil survey needs to be
conducted over the WBW TDE sites.

As we apply the suggested method to retrieve soil PSD from
observed soil moisture, two possible sources of error must be
considered. The first concerns the contribution of spatial variation
of vegetation and topography over the soil moisture sampling area
to the soil moisture spatial distribution, which can produce error
in the estimated soil PSD. The second possible source of error is
the uncertainty in the generalized soil-water potential relationship
with soil-water content of Saxton et al. �1986�. Future research is
needed to assess errors and uncertainties in the inversely esti-
mated soil PSD due to spatial variation in vegetation and topog-
raphy and the uncertainty in soil-water potential relationship with
soil-water content.
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Appendix

According to Saxton et al. �1986�, soil moisture at saturation is
given by

�s = �1 − R/100�	c1 + c2S + c3 ln�C�/ln�10�
 �16�

Take first- and second-order derivatives of �s with respect to sand
�S�, clay �C�, and rock �R� contents as follows:

��s

�S
= �1 −

R

100
�c2;

��s

�C
=

�1 − R/100�c3

C ln�10�

��s = − 	c1 + c2S + c3 ln�C�/ln�10�
/100 �17�

�R
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�2�

�S � C
= 0;

�2�s

�S2 = 0;
�2�s

�C2 = −
�1 − r/100�c3

C2 ln�10�
;

�2�s

�R2 = 0

�18�

Substituting Eqs. �17� and �18� into Eqs. �12� and �13�, we have

�̄1 = �1 − R̄/100�	c1 + c2S̄ + c3 ln�C̄�/ln�10�


− �C
2 �1 − R̄/100�c3/	2C̄2 ln�10�
 �19�

�1
2 = �S

2�1 −
R̄

100
�2

c2
2 + �C

2�1 −
R̄

100
�2

c3
2/	C̄ ln�10�
2

+ �R
2� c1 + c2S̄ + c3 ln�C̄�/ln�10�

100
�2

+ 2�S,C�S�Cc2c3�1 − R̄/100�2/	C̄ ln�10�
 �20�

As the pressure head � is between �10 and �1,500 kPa,
Saxton et al. �1986� showed that the relationship between soil
moisture and � is given by

� = �1 − R/100�� ���
A
�1/B

�21�

where A=100 exp�c4+c5C+c6S2+c7S2C� and B=c8+c9C2

+c10S
2C. Soil moistures at field capacity and wilting point corre-

spond to �=−33 and �1,500 kPa, respectively. Same as saturated
soil moisture, we take first- and second-order derivatives of soil
moisture with regard to S, C, and R, which is shown in Eqs.
�22�–�38�, substitute those expressions into Eqs. �12� and �13�,
and finally obtain mean and standard deviation of soil moisture at
field capacity or witling point as a function of mean and standard
deviation of sand, clay, and rock contents

��

�A
=

1

B
�1 − R/100���

A
��1/B�−1�−

�

A2� = −
�

BA
�22�

��

�B
= �1 − R/100���

A
�1/B�ln��

A
���−

1

B2� = −
�

B2 ln��

A
�

�23�

��

�R
= �− ��

A
�1/B�/100 �24�

�2�

�A2 =
���/�A��BA� − �B

�BA�2 =
� + B�

B2A2 �25�

�2�

�B2 = − ln��

A
�� ���/�B�B2 − 2B�

B4 �
= − ln��

A
��− � ln��/A� − 2B�

B4 � �26�

�2�

�R2 = 0 �27�

�A

�S
= 100	exp�c4 + c5C + c6S2 + c7S2C�
�2c6S + 2c7SC�
= A�2c6S + 2c7SC� �28�
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�A

�C
= 100	exp�c4 + c5C + c6S2 + c7S2C�
�c5 + c7S2� = A�c5 + c7S2�

�29�

�B

�S
= 2c10SC;

�B

�C
= 2c9C + c10S

2 �30�

�2A

�S2 =
�

�S
	A�2c6S + 2c7SC�


= A�2c6 + 2c7C� + �2c6S + 2c7SC�
�A

�S

= A�2c6 + 2c7C� + A�2c6S + 2c7SC�2 �31�

�2A

�C2 =
�

�C
	A�c5 + c7S2�
 = �c5 + c7S2�

�A

�C
= A�c5 + c7S2�2

�32�

�2B

�S2 =
�

�S
�2c10SC� = 2c10C;

�2B

�C2 =
�

�C
�2c9C + c10S

2� = 2c9

�33�

��

�S
=

��

�A

�A

�S
+

��

�B

�B

�S

= −
�

BA
A�2c6S + 2c7SC� −

�

B2 ln��

A
��2c10SC�

= −
�

B
�2c6S + 2c7SC� −

2c10SC�

B2 ln��

A
� �34�

��

�C
=

��

�A

�A

�C
+

��

�B

�B

�C

= −
�

BA
A�2c5 + c7S2� −

�

B2 ln��

A
��2c9C + c10S

2�

= −
�

B
�2c5 + c7S2� −

�2c9C + c10S
2��

B2 ln��

A
� �35�

�2�

�S � C
=

�

�S
� ��

�C
�

=
�

�S
�−

�

B
�2c5 + c7S2� −

�2c9C + c10S
2��

B2 ln��

A
��

=
�2c6S + 2c7SC��2c5 + c7S2��

B2

+
2c10SC�2c5 + c7S2��

B3 ln��

A
� −

2c7S�

B

+
2c10SC�2c5 + c7S2��

B2

+
�2c9C + c10S

2��2c6S + 2c7SC��
B3 ln��

A
�

+
2c10SC�2c9C + c10S

2��
ln��� 2
B4 �
A

�
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+
�2c9C + c10S

2��2c6S + 2c7SC��
B2

+
4c10SC�2c9C + c10S

2��
B3 ln��

A
� −

2c10S�

B2 ln��

A
�
�36�

�2�

�S2 =
�

�S
� ��

�S
� =

�

�S
�−

�

B
�2c6S + 2c7SC� −

2c10SC�

B2 ln��

A
��

=
�2c6S + 2c7SC�2�

B2 +
2�2c6S + 2c7SC��2c10SC��

B3 ln��

A
�

−
�2c6 + 2c7C��

B
−

2c10C�

B2 ln��

A
� +

�2c10SC�2�

B4 �ln��

A
��2

+
2�2c10SC�2�

B3 ln��

A
� +

2�2c6S + 2c7SC��2c10SC��
B2 �37�

�2�

�C2 =
�

�C
� ��

�C
�

=
�

�C
�−

�

B
�2c5 + c7S2� −

�2c9C + c10S
2��

B2 ln��

A
��

=
�2c5 + c7S2�2�

B2 +
�2c5 + c7S2��2c9C + c10S

2��
B3 ln��

A
�

+
�2c5 + c7S2��2c9C + c10S

2��
B2 −

�2c9��
B2 ln��

A
�

+
�2c9C + c10S

2��2c5 + c7S2��
B3

+
�2c9C + c10S

2�2�

B4 �ln��

A
��2

+
�2c9C + c10S

2��c5 + c7S2�
B2

+
2�2c9C + c10S

2��2c10SC��
B3 ln��

A
� �38�
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