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Abstract: One common problem is associated with water balance calculation methods for determining soil moisture for scheduling irri-
gation: errors in the estimated soil moisture are cumulative and frequent recalibrations are needed. A simple and robust approach to estimation
of daily soil moisture using a daily diagnostic soil moisture equation is suggested and studied. The estimated soil moisture is a function of the
time-weighted summation of the ratio of historical precipitation rate to soil moisture loss coefficient. To capture the seasonal variation in soil
moisture loss coefficient, a sinusoidal wave function of the day of year (DOY) is used to represent the seasonal variation in loss coefficient.
A 3-year continuous data set of daily soil moisture and daily precipitation collected at each of four Soil Climate Analysis Network sites—
AR2091; in Arkansas, GA2013 in Georgia, NM2107 in New Mexico, and PR2052 in Puerto Rico—is applied to test the proposed method.
The land cover/land use of these four sites is agricultural/crop fields, grasslands, or desert. Root mean square errors of the estimated volu-
metric soil moisture are less than 5% (v/v), and all correlation coefficients, R2, are greater than 0.78. The results indicate that there are three
advantages associated with the suggested approach: (1) errors in estimated soil moisture are noncumulative; (2) regular recalibration is not
required; and (3) numerical iteration and initial moisture information are not required. DOI: 10.1061/(ASCE)IR.1943-4774.0000450.
© 2012 American Society of Civil Engineers.
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Introduction

In an arid or semiarid region, extremely scarce precipitation makes
irrigation critical to agricultural production (Howell 2001). To im-
prove water use efficiency (WUE) (Stanhill 1986), relatively accu-
rate irrigation scheduling is very important (Jones 2004). Most
irrigation scheduling methods can be classified into two types: soil
moisture-based and plant-based (Jones 2004). Although plant
growth directly depends on plant water status, and thus, a plant-
based method could be more accurate than a soil moisture-based
method (Jones 1990), the difficulties in automatically measuring or
determining plant water stress make plant-based irrigation sched-
uling difficult and expensive to implement (Jones 2004). Therefore,
soil moisture-based irrigation scheduling methods cannot be re-
placed by plant-based methods in the near future. Two types of ap-
proach are currently used to determine soil moisture levels for soil
moisture-based irrigation scheduling (Jones 2004): direct soil mois-
ture measurements (e.g., Campbell and Campbell 1982; Topp and
Davis 1985) and soil water balance calculations (e.g., Allen et al.
1999). Direct soil moisture measurement is easy to use and rela-
tively accurate, but expensive to implement because of soil hetero-
geneity requiring multiple soil moisture sensors to capture spatial
variation in soil moisture (e.g., Pan and Peters-Lidard 2008). Soil
water balance calculations are also easy to apply, but are not as
accurate as direct measurement and require regular recalibration
as errors in the estimated soil moisture are cumulative (Jones 2004).

To overcome these challenges associated with the soil moisture
methods commonly used for the purpose of irrigation scheduling,
this research aims to develop a simple and robust approach for es-
timating daily soil on the basis of the method presented in Pan et al.
(2003); the estimated soil moisture can be used for scheduling irri-
gation in the future. Pan et al. (2003) developed a simple method to
retrieve surface soil moisture from rainfall observations based on a
diagnostic equation of surface soil moisture derived from a linear
stochastic partial differential equation (Entekhabi and Rodriguez-
Iturbe 1994). The estimated soil moisture is a function of the time-
weighted summation of ratio of historical rainfall rate to soil
moisture loss coefficient (Pan et al. 2003). Using observations from
three field campaigns in grassland/agricultural regions, that is,
Monsoon ’90 (Schmugge et al. 1994), Washita ‘92 (Jackson and
Le Vine 1996), and Southern Great Plains ‘97 (Jackson et al. 1999),
Pan et al. (2003) were able to show that their simple method could
retrieve surface soil moisture with a precision and accuracy compa-
rable to those of remotely sensed soil moisture. However, in Pan
et al. (2003), only soil moisture measurements collected during
the summer seasons were tested. The seasonal variation in loss co-
efficient was neglected; therefore, the derived loss coefficient in Pan
et al. (2003) cannot be used to estimate daily soil moisture accurately
for all seasons. The objective of this study is to extend the work of
Pan et al. (2003) and develop a soil moisture loss coefficient function
that can be used for estimating daily soil moisture for all seasons.

Methods

Derivation of the Daily Diagnostic Equation of Surface
Soil Moisture

On the basis of a linear stochastic differential equation suggested
by Entekhabi and Rodriguez-Iturbe (1994), Pan et al. (2003)
simplified the surface soil moisture dynamic equation to
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z
dθ
dt

¼ �ηθþ γP ð1Þ

where z = thickness of the soil column; θ = soil moisture; ηθ = loss
of soil moisture; η = loss coefficient; P = precipitation rate; and
γ = infiltration coefficient representing the ratio of infiltration to
rainfall. Eq. (1) indicates that the surface soil moisture time change
rate is equal to infiltration minus soil moisture loss. Vertical drain-
age and evaporation, or evapotranspiration (ET), are two main
processes controlling surface soil water loss. Rearranging Eq. (1)
results in

zdθ
�ηθþ γP

¼ dt ð2Þ

Consider a time series of soil moisture at a point, as illustrated in
Fig. 1, and integrate Eq. (2) between time t2 and t1 asZ

t1

t2

zdθ
�ηθþ γP

¼
Z

t1

t2

dt ð3Þ

For a shorter time step (≤ 1 day), the loss coefficient (η) and
infiltration coefficient (γ) are assumed to be independent of time;
that is, they are constants between time t2 and t1. P in Eq. (3) is the
observed rainfall between time t1 and t2 and, thus, is independent of
soil moisture. Under the earlier assumption, Eq. (3) becomes

� z
η1

ln

�
θ1 � γP1∕η1
θ2 � γP1∕η1

�
¼ t1 � t2 ð4Þ

where η1 and P1 = loss coefficient and cumulative precipitation
between time t1 and t2, respectively. Simplifying Eq. (4) yields

θ1 ¼ θ2e�
η1
z ðt1�t2Þ þ γP1

η1
½1� e�

η1
z ðt1�t2Þ� ð5Þ

For a daily time step (i.e., t1 � t2 ¼ 1 day), Eq. (5) can be re-
written as

θ1 ¼ θ2e�
η1
z þ γP1

η1
ð1� e�

η1
z Þ ð6a Þ

where η1, P1, and θ1 = daily soil moisture loss coefficient, precipi-
tation, and soil moisture on Day 1; and θ2 = soil moisture of on Day
2. Day 2 is one day before Day 1. Similarly,

θ2 ¼ θ3e�
η2
z þ γP2

η2
ð1� e�

η2
z Þ ð6b Þ

θn�1 ¼ θne�
ηn�1
z þ γPn�1

ηn�1
ð1� e�

ηn�1
z Þ ð6c Þ

Substituting (6b), …, (6c) into Eq. (6a) results in

θ1 ¼ θne�
P

i¼n�1
i¼1

ðηi∕zÞ þ
Xi¼n�1

i¼2

�
γPi

ηi
ð1� e�

ηi
z Þe�

P
j¼i�1
j¼1

ðηj∕zÞ
�

þ γP1

η1
ð1� e�

η1
z Þ ð7Þ

Eq. (7) shows that as window size (i.e., n) increases, the expo-
nential term exp �P

i¼n�1
i¼1 ðηi∕zÞ

� �
approaches a small number or

zero; thus, the contribution of the leading term of the right-hand
side of Eq. (7) to θ1 diminishes. Therefore, at a threshold time win-
dow size n, soil moisture can be estimated directly from a weighted
average of cumulative rainfall without any information on the ini-
tial soil moisture condition as

θ1 ¼
Xi¼n�1

i¼2

�
γPi

ηi
ð1� e�

ηi
z Þe�

P
j¼i�1
j¼1

ðηj∕zÞ
�
þ γP1

η1
ð1� e�

η1
z Þ ¼ γB

ð8Þ
where B in Eq. (8) is defined as

B ¼
Xi¼n�1

i¼2

�
Pi

ηi
ð1� e�

ηi
z Þe�

P
j¼i�1
j¼1

ðηj∕zÞ
�
þ P1

η1
ð1� e�

η1
z Þ ð9Þ

and represents the summation of the weighted ratio of rainfall rate
to loss coefficient. Eq. (8) indicates that as the number of days be-
fore Day 1 increases, the contribution of the rainfall to the soil
moisture of Day 1 is reduced because of the decreasing exponential

term exp �Pj¼i�1
j¼1 ðηj∕zÞ

h i
in Eq. (8), which ensures that B ap-

proaches a stable value as n increases.
The threshold time window size depends on the value of (η∕z)

and the climate condition. Generally, volumetric soil moisture
varies between 50 and 2%. If the annual soil water loss rate in
the top 5-cm layer (i.e., z ¼ 5 cm) is 1 m∕year, it will take less
than 3 months for the first term on the right-hand side of Eq. (7)
to reach 0.5%. Therefore, a 3-month window is sufficient for cal-
culating soil moisture using Eq. (8), without any initial condition of
soil moisture in the climate region, where the annual potential
evaporation or ET rate is greater than 1 m∕year (e.g., in tropical
and midlatitude regions). If the annual potential evaporation or
ET rate is less than 1 m∕year (e.g., in high-latitude areas), a larger
window (i.e., > 3 months) is needed.

Loss Coefficient

Similar to Entekhabi and Rodriguez-Iturbe (1994), the loss of soil
moisture in Eq. (1) is approximated by the multiplication of soil
moisture and the loss coefficient, ηθ. The loss (or dry-down) of
surface soil moisture is controlled by drainage and evaporation
(over bare ground) or ET (over vegetated land surface). Because
drainage is controlled by soil hydraulic properties and ET is af-
fected by the potential evapotranspiration (PET), the loss coeffi-
cient depends on both soil hydraulic properties (controlling
drainage) and PET (controlling the actual ET rate).

Potential evapotranspiration is also known as atmospheric de-
mand evapotranspiration, that is, evapotranspiration controlled
by weather and climate conditions. For example, solar radiation
is the energy that drives evaporation from bare soils and transpira-
tion from vegetation. Air temperature and relative humidity directly
affect the water vapor gradient between the atmosphere and the land
surface. Wind speed controls the convection of water vapor from
the land surface into the atmosphere. Canopy structure also affects

Fig. 1. Time series of soil moisture divided into n� 1 periods; cumulative rainfall during each period is Pi, which is bounded by time ti and tiþ1; θi is
soil moisture at time ti
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the vertical profiles of air temperature and wind, which, in turn,
influence the exchange of water and energy between land surface
and atmosphere. Many published methods estimate PET. Gener-
ally, these methods can be classified into three categories on the
basis of data requirements (Jensen et al. 1990): (1) temperature-
based methods, for which only air temperature and daylength are
needed (e.g., Thornthwaite 1948; Hamon 1963); (2) radiation-
based methods, for which net radiation and air temperature are
needed (e.g., Priestley and Taylor 1972); and (3) combination
methods, for which net radiation, air temperature, wind speed,
and relative humidity are needed (e.g., Monteith 1965). In this
study, a choice could be made among the preceding methods. How-
ever, incorporating weather conditions other than precipitation
(e.g., solar radiation, air temperature, relative humidity, and wind
speed) would make the approach complicated and difficult to im-
plement, as such weather condition data may be not available in all
geographic locations. Because climate conditions (e.g., daily mean
values of solar radiation, air temperature, and relative humidity at a
location) are approximate functions of the day of year (DOY), a
sinusoidal wave function of DOY is used to represent the daily soil
moisture loss coefficient η (which depends on soil hydraulic prop-
erties and PET rate) as

ηi ¼ c1 þ c2 sin

�
2πðDOYi þ c3Þ

365

�
ð10Þ

where ηi = loss coefficient of day i; DOYi = DOYof day i; and c1,
c2, and c3 = constants, hereafter referred as the loss coefficient
parameters. These three loss coefficient parameters, depending
on geographic location, soil, and vegetation characteristics, can
be inversely determined by maximizing the coefficient of correla-
tion between observed soil moisture and B value (i.e., best fit be-
tween observed soil moisture and B value), given as

max

8<
:

P
m
i¼1½ðθi � �θÞðBi � �BÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

m
i¼1ðθi � �θÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m
i¼1ðBi � �BÞ2

p
9=
;
������
c1;c2;c3

ð11Þ

where θi and Bi, i ¼ 1;…;m = soil moisture measurements and
computed B values, respectively; and �θ and �B = mean values of
soil moisture measurements and computed B values, respectively.

Two methods are often used to achieve the best fit: the Gauss–
Newton method (Fletcher 1987) and simple “global search” meth-
ods. To use the Gauss–Newton method to maximize the correlation
coefficient given in Eq. (11), a Jacobian matrix must first be con-
structed. However, the three unknown parameters (c1, c2, and c3) in
the loss coefficient function [Eq. (10)] and the high nonlinearity of
the B expression [Eq. (9)] make it difficult to obtain an analytical
expression of the Jacobian matrix. Compared with the Gauss–
Newton method, global search methods are simple.

Several methods can be used for a global search. The simplest
method is to exhaustively search the parameter space of unknown
parameters. Although this method is simple and efficient for prob-
lems with few parameters, the computation becomes unfeasible for
problems with many parameters (Mosegaard and Tarantola 1995).
To inverse a nonlinear equation with high dimensionality (i.e., many
parameters), a Monte Carlo search, that is, a random walk in the
parameter space, can be used. Although the concept underlying the
Monte Carlo method is simple and not new, it has been widely used
to solve inverse problems, especially in seismology (Keilis-Borok
and Yanovskaya 1967; Rothman 1986; Landa et al. 1989;
Mosegaard and Vestergaard 1991; Koren et al. 1991). Because the
primary objective of this paper is to demonstrate the feasibility of
the suggested method, the simple and feasible Monte Carlo search
method is used here.

According to Eq. (10), c1 represents the mean value of the loss
coefficient, c2 is the magnitude of the loss coefficient variation, and
c3 is the phase of the sinusoidal wave. Because the loss coefficient
cannot be negative (i.e., always greater or equal to zero), c2 must be
less than or equal to c1 Both c1 and c2 are in the same units as
precipitation (i.e., length/day, because a daily time step is used in
this study), and c3 is expressed in DOY. On the basis of the map of
mean annual pan evaporation for the contiguous United States of
Farnsworth and Thompson (1982), the maximum free-water-
surface evaporation is approximately 0:97 cm∕day (140 in:∕year)
in southeast Arizona. Therefore, a maximum soil moisture loss
coefficient of 2 cm∕day is sufficiently large to include all climate
conditions in the tropical and middle-latitude regions. Thus the
searching domain of the loss coefficient function parameters is
given as

searching domain ¼ f0 < c1 < 2 cm∕day; 0 < c2 ≤ c1;

0 < c3 < 366g ð12Þ

Relationship between Soil Moisture and B Value

To use Eq. (8) to estimate soil moisture over the dynamic range of
soil moisture (i.e., between residual soil moisture and saturated soil
moisture), the infiltration coefficient γ must be determined. How-
ever, in reality, the infiltration coefficient γ cannot be considered a
single constant as it may vary with soil moisture. As B increases,
soil moisture increases and approaches saturated soil moisture, and
the infiltration coefficient γ will decrease and finally approach zero
(Pan et al. 2003). The decrease in infiltration coefficient with in-
crease in B determines that an exponential curve is the best fit
of soil moisture versus B (Pan et al. 2003). Therefore, the general
form of soil moisture as a function of B should be

θ ¼ θre þ ðϕe � θreÞð1� e�c4BÞ ð13Þ

where θre and ϕe = effective residual soil moisture and effective
porosity, respectively; and c4 = empirical constant related to soil
hydraulic properties. The infiltration coefficient γ loses its role
in determining soil moisture. Eq. (13) is called the daily diagnostic
soil moisture equation.

Study Sites and Data

The Soil Climate Analysis Network (SCAN), a comprehensive, na-
tionwide soil moisture and climate information system, is admin-
istrated by the U.S. Department of Agriculture Natural Resources
Conservation Service (USDA NRCS) through the National Water
and Climate Center (NWCC), in cooperation with the NRCS
National Soil Survey Center (NSSC) (Seyfried et al. 2005; Schaefer
et al. 2007). The SCAN system measures soil moisture content
hourly at 5, 10, 20, and 50 cm and atmospheric forcing (e.g., pre-
cipitation, air temperature, solar radiation). The archived data at
each SCAN site can be downloaded from http://www.wcc.nrcs
.usda.gov/scan.

Because the primary objective of this study is to develop an ap-
proach to estimate soil moisture for future irrigation scheduling
purpose, four sites (see Table 1) in agricultural fields or grasslands
were chosen from more than 100 SCAN sites to demonstrate the
approach and methodology described under “Methods.” On the
other hand, to simplify the problem, snow processes (i.e., snow ac-
cumulation and snow melting) are not considered in this study.
Therefore, four sites were chosen from those where snow accumu-
lation during the study period is zero.
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Results and Discussion

At each site, a 3-year record of continuous daily rainfall and top-
5-cm soil moisture was compiled. Daily soil moisture and daily
precipitation data from the first 2 years were used for parameter
estimation, and data from the third year were used to test the
suggested method. As described under “Methods,” to apply the
diagnostic soil moisture equation to estimation of soil moisture,
the loss coefficient must first be determined as a sinusoidal wave
function of DOY [i.e., Eq. (10)]. The three loss coefficient param-
eters were determined by maximizing the coefficient of correlation
between observed soil moisture in the parameter estimation period
and computed B values using the Monte Carlo search method
(Mosegaard and Tarantola 1995) as described under “Methods.”
Table 2 lists the results and the associated coefficients of correlation
(R2

θ;B) between observed soil moisture and B values. Scatterplots of
observed soil moisture versus B are shown in Fig. 2. Both the scat-
terplots in Fig. 2 and the associated high R2

θ;B values (all R
2
θ;B ≥ 0:7)

indicate that: (1) the proposed sinusoidal wave function of the loss
coefficient [Eq. (10)] can capture the seasonal variation in the soil

moisture dry-down process; and (2) the relationship between B
value and soil moisture, that is, the proposed diagnostic soil mois-
ture [Eq. (13)], can be used to estimate soil moisture without any
information on initial soil moisture condition (Pan et al. 2003).

In the diagnostic soil moisture equation [Eq. (13)], three
parameters—effective residual soil moisture, θre; effective porosity,
ϕe; and parameter c4—can be determined by best-fitting the scat-
terplot of observed soil moisture versus B value in Fig. 2 using the
least-squares method. The Matlab Curve Fitting Toolbox was used
to perform the best-fitting, and the best-fit curves obtained are plot-
ted in Fig. 2. Estimated effective residual soil moisture, effective
porosity, parameter c4, root mean square errors (RMSEs) and co-
efficients of correlation between the observed and estimated soil
moisture (R2

θ;θ0 ) are listed in Table 3. The time series plots of the
observed and estimated soil moisture in the parameter estimation
period are shown in Fig. 3. The results indicate that there is a good
agreement between observed and computed soil moisture in the
parameter estimation period because of the small errors (all RMSEs
are < 5%) are high correlation coefficients (all R2

θ;θ0 values are
≥ 0:8).

To carry out an additional test of the suggested method, the de-
rived loss coefficient function [Eq. (10)] and the effective hydraulic
properties and parameters in the diagnostic soil moisture equation
[Eq. (13)] were used to estimate soil moisture in the method-testing
period (i.e., the third year) at each site. Time series plots of ob-
served and estimated soil moisture in the testing period are shown
in Fig. 4. The RMSEs and correlation coefficients of estimated soil
moisture during the method-testing period at each site are listed in
Table 4. Agreement between observed and estimated soil moisture
in the third year (the method-testing period) is also good; that is, all

Table 1. Four SCAN Sites

Site State/region Lat. Long. Land cover Soil texture Par. est. period Testing period

AR2091 Arkansas 34°17′N 91°21′W Grass Silt loam 1/1/07–12/31/08 1/1/09–12/31/09
GA2013 Georgia 33°53′N 83°26′W Grass/crop Sandy loam 1/1/06–12/31/07 1/1/08–12/31/08
NM2107 New Mexico 33°32′N 103°15′W Desert Loamy sand 1/1/07–12/31/08 1/1/09–12/31/09
PR2052 Puerto Rico 18°28′N 67°3′W Grass/bare soil Clay 1/1/07–12/31/08 1/1/09–12/31/09

Table 2. Estimated Loss Coefficient Parameters and Coefficients of Cor-
relation (R2

θ;B) between Observed Soil Moisture and Computed B Values

Site c1 c2 c3 R2
θ;B

AR2091 0.231 0.177 268 0.70

GA2013 0.460 0.178 274 0.74

NM2107 0.553 0.378 261 0.79

PR2052 0.530 0.181 285 0.78
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Fig. 2. Scatterplots of observed top-5-cm soil moisture versus B values, and best-fit curves of the scatterplots at AR2091, GA2013, NM2107, and
PR2052
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RMSEs are less than 5%, and the correlation coefficient R2
θ;θ0 is

between 0.78 and 0.80 (Table 4).
As Jones (2004) indicated, there is a common problem associ-

ated with water balance calculation methods: the errors in the

estimated soil moisture are cumulative and regular recalibration
is needed. To demonstrate that the method suggested in this paper
can overcome this problem, the root mean square error of each
month (RMSEm) is calculated as
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Fig. 3. Observed and estimated top-5-cm soil moisture during the parameter estimation period; because a 3-month window is used, estimated soil
moisture starts on April 1 at each site

Table 3. Estimated Effective Soil Hydraulic Properties, RMSEs, and
Coefficients of Correlation between Observed and Estimated Soil
Moisture during the Parameter Estimation Period

Site θre ϕe c4 RMSE R2
θ;θ0

AR2091 6.6 44.1 0.9 4.50 0.80

GA2013 9.4 44.4 0.8 2.73 0.82

NM2107 3.5 25.2 1.4 1.72 0.85

PR2052 3.1 39.9 1.4 4.91 0.86
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Fig. 4. Observed and estimated top-5-cm soil moisture during the method-testing period

Table 4. RMSEs and Coefficients of Correlation between Observed and
Estimated Soil Moisture during Method-Testing Period

Site RMSE R2
θ;θ0

AR2091 3.75 0.78

GA2013 3.07 0.79

NM2107 1.66 0.80

PR2052 4.03 0.78
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RMSEm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPdm

i¼1ðθ0i � θiÞ2
dm

s
ð14Þ

where dm = total number of days in month m; θi = observed soil
moisture; and θ0i = estimated soil moisture of day i in month m. The
time series plots of RMSEm in Fig. 5 indicate that the errors in es-
timated soil moisture are not cumulative; therefore, no recalibration
is needed.

Conclusions

A simple and robust approach to estimation of daily soil moisture
using a daily diagnostic soil moisture equation has been suggested
and tested. The daily diagnostic soil moisture equation is derived
from the linear stochastic partial differential equation of soil mois-
ture dynamics (Entekhabi and Rodriguez-Iturbe 1994; Pan et al.
2003). The estimated soil moisture is a function of the time-
weighted summation of ratio of historical rainfall rate to soil
moisture loss coefficient. To capture the seasonal variation in soil
moisture loss coefficient, a sinusoidal wave function of the day of
year is used to represent the loss coefficient. The optimal param-
eters of the sinusoidal wave function are inversely determined by
maximizing the coefficient of correlation between the observed soil
moisture and the time-weighted summation of ratio of historical
rainfall rate to soil moisture loss coefficient. The observed soil
moisture data collected at the four USDA SCAN sites were used
to test the proposed method. The small errors (RMSEs < 5%) and
high correlation coefficients (> 0:8) of the estimated soil moisture
indicate three advantages associated with the proposed approach:
(1) the errors in estimated soil moisture are noncumulative; (2) regu-
lar recalibration is not required to correct for cumulative errors; and
(3) numerical iteration and initial moisture inputs are not needed.
Therefore, the daily surface soil moisture diagnostic equation ap-
proach is more efficient than the traditional numerical modeling
approach.

Because this study focused on the feasibility of the suggested
method, the simple sinusoidal wave function [Eq. (10)], with only

one independent variable (DOY) and three loss coefficient param-
eters (c1, c2, and c3), was used to approximate the soil moisture loss
coefficient. The three loss coefficient parameters depend on geo-
graphic location, soil, and vegetation characteristics. Because only
four SCAN sites were chosen for testing the approach in this study,
no effort was made to establish the relationship among loss coef-
ficient function parameters, geographic location, soil properties,
and vegetation characteristics and to determine the dependency
of effective residual soil moisture, effective porosity, and parameter
c4 in the daily diagnostic soil moisture equation on soil and topo-
graphic characteristics, which deserve a future study.
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